Abstract
In this study, Au+Au collisions with an impact parameter of fm at GeV are simulated using the AMPT model to provide preliminary final-state information. After transforming this information into appropriate input data (the energy spectra of final-state charged hadrons), we construct a multi-layer perceptron (MLP) and convolutional neural network (CNN) to connect final-state observables with the impact parameters. The results show that both the MLP and CNN can reconstruct the impact parameters with a mean absolute error approximately fm, although the CNN behaves slightly better. Subsequently, we test the neural networks at different beam energies and pseudorapidity ranges in this task. These two models work well at both low and high energies. However, when conducting a test for a larger pseudorapidity window, the CNN exhibits a higher prediction accuracy than the MLP. Using the Grad-CAM method, we shed light on the 'attention' mechanism of the CNN model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.