Abstract
BackgroundThe main objective of the present method was to automatically obtain a spatial curve of the thoracic and lumbar spine based on a 3D shape measurement of a human torso with developed scoliosis. Manual determination of the spine curve, which was based on palpation of the thoracic and lumbar spinous processes, was found to be an appropriate way to validate the method. Therefore a new, noninvasive, optical 3D method for human torso evaluation in medical practice is introduced.MethodsTwenty-four patients with confirmed clinical diagnosis of scoliosis were scanned using a specially developed 3D laser profilometer. The measuring principle of the system is based on laser triangulation with one-laser-plane illumination. The measurement took approximately 10 seconds at 700 mm of the longitudinal translation along the back. The single point measurement accuracy was 0.1 mm. Computer analysis of the measured surface returned two 3D curves. The first curve was determined by manual marking (manual curve), and the second was determined by detecting surface curvature extremes (automatic curve). The manual and automatic curve comparison was given as the root mean square deviation (RMSD) for each patient. The intra-operator study involved assessing 20 successive measurements of the same person, and the inter-operator study involved assessing measurements from 8 operators.ResultsThe results obtained for the 24 patients showed that the typical RMSD between the manual and automatic curve was 5.0 mm in the frontal plane and 1.0 mm in the sagittal plane, which is a good result compared with palpatory accuracy (9.8 mm). The intra-operator repeatability of the presented method in the frontal and sagittal planes was 0.45 mm and 0.06 mm, respectively. The inter-operator repeatability assessment shows that that the presented method is invariant to the operator of the computer program with the presented method.ConclusionsThe main novelty of the presented paper is the development of a new, non-contact method that provides a quick, precise and non-invasive way to determine the spatial spine curve for patients with developed scoliosis and the validation of the presented method using the palpation of the spinous processes, where no harmful ionizing radiation is present.
Highlights
The main objective of the present method was to automatically obtain a spatial curve of the thoracic and lumbar spine based on a Three-dimensional space (3D) shape measurement of a human torso with developed scoliosis
Despite 5 times greater typical values of RMSDX-Y compared with the typical values of RMSDX-Z, the maximum value of RMSDX-Y for all 24 patients did not exceed the error of palpation in the frontal plane (7.75 mm < 9.8 mm)
According to a comparison of the cervical, thoracic and lumbar spinous processes characteristics outlined by Tortora et al [34], the typical thoracic spinous process is not narrower than the typical lumbar spinous process
Summary
The main objective of the present method was to automatically obtain a spatial curve of the thoracic and lumbar spine based on a 3D shape measurement of a human torso with developed scoliosis. The external shape of the torso can be determined using several methods, most commonly mechanical methods such as the DeBrunner kyphometer [8], »Flexicurve ruler« [9], Gravity goniometer or inclinometer [10] and Myrin inclinometer [11]. Optical methods such as raster stereography [12], Moiré topography [13] and laser triangulation imaging [14] are used. The main drawback of mechanical methods is the lack of automated processes such as data storing, processing and visualization
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.