Abstract

The hydroperoxyl radical (HO2) plays an important role in combustion systems, atmospheric chemistry and the removal of air pollutants by non-thermal plasmas. This work reports the determination of the hydroperoxyl radical in dielectric barrier discharge plasmas via near-infrared continuous wave cavity ring-down spectroscopy. HO2 radicals were observed in discharges of HCHO/O2/H2O/N2 mixtures around 6625.7 cm−1 in the first H–OO stretching overtone, (2, 0, 0)–(0, 0, 0), of its ground electronic state . At certain discharge conditions (ac frequency of 5 kHz, peak-to-peak voltage of 6.5 kV, 1900 ppm HCHO, 20% O2, 3.5% H2O in N2, Ptotal = 30 Torr), HO2 radical concentration was determined to be 1.0 × 1013 molecules cm−3. The temporary evolution of HO2 concentration was obtained using the ‘time window’ method. The effects of oxygen concentration, water concentration, the discharge voltage and discharge gas pressure on the concentration of HO2 radicals have been investigated. The detection limit of our setup for the HO2 radical is ∼1 × 1011 molecules cm−3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call