Abstract

We have compared the photoinitiated electron-transfer (ET) reaction between cytochrome b(5) (b(5)) and zinc mesoporphyrin-substituted hemoglobin [(ZnM)Hb] and Hb variants in order to determine whether b(5) binds to the subunit surface of either or both Hb chains, or to sites which span the dimer--dimer interface. Because the dimer--dimer interface would be disrupted for monomers or alpha beta dimers, we studied the reaction of b(5) with alpha ZnM chains and (ZnM)Hb beta W37E, which exists as alpha beta dimers in solution. Triplet quenching titrations of the ZnHb proteins with Fe(3+)b(5) show that the binding affinity and ET rate constants for the alpha-chains are the same when they are incorporated into a Hb tetramer or dimer, or exist as monomers. Likewise, the parameters for beta-chains in tetramers and dimers differ minimally. In parallel, we have modified the surface of the Hb chains by neutralizing the heme propionates through the preparation of zinc deuterioporphyrin dimethyl ester hemoglobin, (ZnD-DME)Hb. The charge neutralization increases the ET rate constants 100-fold for the alpha-chains and 40-fold for the beta-chains (but has has little effect on the affinity of either chain type for b(5), similar to earlier results for myoglobin). Together, these results indicate that b(5) binds to sites at the subunit surface of each chain rather than to sites which span the dimer-dimer interface. The charge-neutralization results further suggest that b(5) binds over a broad area of the subunit face, but reacts only in a minority population of binding geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.