Abstract

The small punch (SP) test is utilized to assess the mechanical characteristics and damage progression of heat-resistant alloys. The inverse finite element analysis method incorporating SP tests is a parameter identification method based on adjusting the accuracy of the simulated load-displacement curves. In this paper, the elastoplastic parameters of the Hollomon model and the damage parameters of the Gurson-Tvergaard-Needleman (GTN) model are determined based on the undamaged and damaged stages of the load-displacement curves, respectively. The whole stress-strain curves of the tested materials are then built using the results of finite element simulations of the tensile specimens of ZG15Cr2Mo1, P91, 316H, and Hastelloy X at room and elevated temperatures. Comparison with uniaxial tensile tests indicates that the simulated stress-strain curves closely resemble the experimental data from the tensile testing. In addition, the simulated damage evolution characteristics of the SP specimens are consistent with the mechanical model based on the actual deformation behavior. It is possible to comprehend the damage evolution process by analyzing the SP specimens’ stress and strain change characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.