Abstract

Background:There are 4 different genera (i.e. Vibrio, Aliivibrio, Photobacterium, and Shewanella) in the new classification of bioluminescent bacteria. The mechanism of bioluminescence has yet to be fully elucidated. Therefore, the determination of physiological and genetic characteristics of bioluminescent bacteria isolated from different sources is very important. Pulsed-Field Gel Electrophoresis (PFGE) has the highest discriminatory power among the different molecular typing methods for the investigation of the clonal relationships between bacteria. For the PFGE analysis of bioluminescent bacteria, the NotI-HF™ is the method of choice among the restriction enzymes.Objectives:The present study aimed to determine genetic relatedness via PFGE in 41 bioluminescent bacteria (belonging to 10 different species) isolated and identified from various marine sources.Materials and Methods:Different bioluminescent bacteria (i.e. Vibrio gigantis, V. azureus, V. harveyi, V. lentus, V. crassostreae, V. orientalis, Aliivibrio logei, A. fischeri, Shewanella woodyi, and Photobacterium kishitanii) were analyzed by PFGE using the NotI-HF™ restriction enzyme. The whole DNA of the strains embedded into the agarose plugs was digested with enzyme at 37°C for 30 minutes. CHEF-Mapper PFGE system was used for electrophoresis and band profile of the strains for the NotI-HF™ restriction enzyme were analyzed by Bio-Profil-1D++ software (Vilber Lourmat) at 10% homology coefficient.Results:Although all experiments were performed three times, four of forty-one bioluminescent strains (V. gigantis E-16, H-16 and S3W46 strains and A. fischeri E-4 strain) could not be typed by PFGE technique with NotI-HF™ enzyme. While only two strains (V. crassostreae H-12 and H-19 strains) were exhibiting same band pattern profiles (100% genome homology), thirty-six different PFGE band patterns were obtained. Pattern homologies changed between 66% - 92%, 73% - 83% and 49% - 100% for V. gigantis, V. harveyi and other strains, respectively.Conclusions:The obtained results revealed that there has been a high rate of genetic diversity in bioluminescent strains isolated from Gulf of Izmir and V. lentus and V. crassostreae strains could be also bioluminescent for the first report. At the same time, PFGE analysis of bioluminescent bacteria including four different genera and ten different species were shown for the first time by this study. It is considered that data acquired by this study will contribute evolution and mechanism of bioluminescence to further works to be done.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.