Abstract

The fractal theory has been widely applied to the analysis of gas adsorption isotherms, which are used for the pore structure characterization in unconventional reservoirs. Fractal dimension is a key parameter that can indicate the complexity of the pore structures. So far, most fractal models for gas adsorption are for N2 adsorption, while fractal models for CO2 adsorption are rarely reported. In this paper, we built a fractal model for CO2 adsorption by combining a thermodynamic model and the Dubinin–Astakhov model. We then applied the new model to three CO2 adsorption isotherms measured on shale samples. The results show that the fractal dimension from the new model lies between 2 and 3, which agrees with the fractal geometry. The new model presented in this paper can be used for the CO2 adsorption analysis, which allows characterizing micropore structures in shales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.