Abstract

HighlightsA poppy harvester can be used as an alternative to the manual harvesting.Effective field capacity of a poppy harvester is 34 to 53 times higher than the manual harvest.Depending on the forward speed, field losses increase.Cleaning efficiency can be increased by a more aggressive sieving application.Abstract. The operations of collecting the poppy from the field by hand and then breaking it apart require intensive labor and time consumption, which increases the cost significantly. A mechanical harvester to be used for poppy harvesting will save human labor and reduce time consumption. Hence, a poppy harvester was designed to harvest and crush poppy capsules, and separate the stalks, seeds, and capsule parts from the shredded material with this study. The prototype harvester consists of a harvest unit, conveying unit, threshing unit, separating and cleaning unit, bagging unit, and power transmission unit. The machine is pulled by the tractor and its moving units are driven by the PTO and hydraulic system. In field experiments with the prototype poppy harvester, the material capacity of the machine (seed, capsule pieces, and total product), cleaning efficiency, and harvest losses were determined. The experiments were conducted in a randomized complete block design with three replicates. The prototype machine was operated at two forward speeds of 1.24 km h-1 and 1.95 km h-1. The effective field capacity of the harvester was determined to be 34 to 53 times higher than the manual harvest, and increasing forward speed, increased machine capacity by approximately 50%. The cleaning efficiency was determined to be approximately 84% for both forward speeds. Depending on the forward speed, field losses increased and varied between 13% and 21%. Keywords: Keywords., Cleaning capacity, Field losses, Harvesting capacity, Poppy harvester.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.