Abstract

HighlightsA hydraulic model was used to determine the value of the equivalent length for evaluating local emitter head losses in drip laterals.Dimensional analysis was used to develop an equation for predicting the equivalent length.The effects of the design variables on the equivalent length were investigated.The accuracy of the equation was validated by a previous experiment and an alternative hydraulic model.Abstract. The equivalent length is widely used in current hydraulic models to estimate local emitter head losses for the analysis and design of drip irrigation laterals. The accurate evaluation of the equivalent length is therefore required in the lateral design procedure. In this study, a finite element model was used to develop an equation to predict the equivalent length. Eight design variables were selected, and 32 lateral cases were generated using the orthogonal design. The total local head loss in the 32 laterals were firstly calculated using the local head loss coefficient multiplied by the kinetic head. The solutions were considered as exact values and being equivalent to friction head losses, and the equivalent length was computed using the Darcy-Weisbach equation. Dimensional analysis and regression procedures were then used to obtain the prediction equation related to the selected variables. The results show that the converted equivalent lengths accurately estimated the local head losses in the 32 laterals. The local head loss coefficient was the most important factor for the equivalent length, followed by the lateral diameter. The effects of the lateral inlet pressure head, flow exponent, nominal flow rate of emitter, number of emitter, emitter spacing and lateral slope were not significant. Two models were developed to predict the equivalent length, and to calculated the total local head losses. The results demonstrated satisfactory agreement with the measured value available in a previous experimental study, with RMSE = 0.202 and 0.162 m for the full and simplified model, respectively. The percent error between the measured and calculated total head losses using simplified model was from -16.5% to 14.8%, and the Camargo and Sentelhas coefficient c was higher than 0.98. The equations were therefore capable for evaluating the local head loss in the hydraulic design of drip irrigation laterals. Keywords: Dimensional analysis, Finite element method, Hydraulic design, Pressure head, Uniformity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call