Abstract

A general method for the determination of the enrichment of isotopically labelled molecules by mass spectrometry (MS) is described. In contrast to other published procedures, the method described here takes into account and corrects for measurement errors such as the contribution at M - 1 due to loss of hydrogen or lack of spectral resolution and provides an uncertainty value for the determined enrichment. The general procedure requires the following steps: (1) evaluation of linearity in the mass spectrometer by injecting the natural abundance compound at different concentration levels, (2) determination of the purity of the mass cluster using the natural abundance analogue, (3) calculation of the theoretical isotope composition of the labelled compound using different tentative isotope enrichments, (4) calculation of 'convoluted' isotope distributions for the labelled compound taking into account the purity of the mass cluster determined with the natural abundance analogue and (5) comparison of the isotope distributions measured for the labelled compound with those calculated for different isotope enrichments using linear regression. The method was applied to a series of commercially available (13)C- and (2)H-labelled compounds and to a suite of singly (13)C-labelled β2-agonist prepared in-house both by gas chromatography (GC)-MS, GC-tandem MS (MS/MS) and liquid chromatography-MS/MS with satisfactory results. It was observed that the main uncertainty source for the isotope enrichment was the uncertainty in the purity of the measured cluster as determined with the natural abundance compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call