Abstract

In this study, a series of asymmetric aryl 1,3-dicarbonyl compounds were synthesized and their enol forms were observed via experimental data and theoretical calculations. According to the 1H- and 13C-NMR results, all the investigated compounds were found as a single enol form in CDCl3 solution. Moreover, their HMBC spectra were applied to identify the observed enol forms and correlations between certain protons and carbon atoms were considered. The dihedral angles of the asymmetric compounds that have aryl units on both sides were calculated by DFT to understand the reason for the observed enol forms. Small dihedral angles caused longer conjugation, resulting in more stable compounds and it was found that the observed enol forms were based on small dihedral angles, namely, resonance is the driving force. Furthermore, the compounds possessing both aryl and alkyl moieties prefer the enol form towards the aromatic ring side due to longer conjugation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.