Abstract

Environmental burdens of four different full-scale facilities treating source-separated organic fraction of Municipal Solid Wastes (OFMSW) have been experimentally evaluated. The studied facilities include different composting technologies and also anaerobic digestion plus composting. Home composting, as an alternative to OFMSW management, was also included in the study. Energy (electricity and diesel), water consumption and emissions of volatile organic compounds (VOC), ammonia, methane and nitrous oxide have been measured for each process. Energy consumption ranged between 235 and 870 MJ Mg OFMSW−1 while the emissions of the different contaminants considered per Mg OFMSW were in the range of 0.36–8.9 kg VOC, 0.23–8.63 kg NH3, 0.34–4.37 kg CH4 and 0.035–0.251 kg N2O, respectively. Environmental burdens of each facility are also analyzed from the point of view of process efficiency (i.e. organic matter stabilization degree achieved, calculated as the reduction of the Dynamic Respiration Index (DRI) of the waste treated). This study is performed through two new indices: Respiration Index Efficiency (RIE), which includes the reduction in the DRI achieved by the treatment process and Quality and Respiration Index Efficiency (QRIE), which also includes the quality of the end product. Finally, a Life Cycle Assessment is performed using the Respiration Index Efficiency (RIE) as the novel functional unit instead of the classical LCA approach based on the total mass treated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call