Abstract

Optical emission spectroscopy (OES) measurements coupled with a collisional-radiative model were used to characterize a plane-to-plane dielectric barrier discharge at atmospheric pressure operated in nominally pure helium. The model predicts the population densities for the n = 3 levels of He excited by electron impact processes from either ground or metastable states and takes into account excitation transfer processes between He n = 3 levels as well as all relevant radiative decays and quenching reactions. Time-resolved OES measurements indicate that line ratios from He n = 3 triplet states (for example, 587.5 nm-to-706.5 nm) and singlet states (for example, 667.8 nm-to-728.1 nm) first sharply rise as the discharge ignites and then slowly decrease as it extinguishes. Assuming that n = 3 levels are first populated only by electron impact on ground state He atoms and then only by electron impact on metastable He atoms as the discharge current and thus the metastable number density rise, triplet and singlet line ratios predicted by the model become in each opposite case solely dependent on the electron temperature Te (assuming Maxwellian electron energy distribution function). The values of Te deduced from the analysis of both ratios were relatively high early in the discharge cycle (around 1.0–1.4 eV) and then much lower near discharge extinction (around 0.15 eV). For analysis of time-integrated (or cycle-averaged) OES measurements, the electron temperatures were closer to the 0.15 eV values near the end of the discharge cycle, in good agreement with the values expected from theoretical predictions in the positive columns of He glow discharges at atmospheric pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.