Abstract

Results are presented of measurements on a single crystal sample of scandium metal at temperatures down to 100 {mu}K using nuclear quadrupole resonance (NQR). Two regimes are found in the relaxation curves; an initial fast relaxation, followed by a slower relaxation consistent with the three exponential recovery expected for an I = 7/2 system in zero external magnetic field. The Korringa constant for this longer time relaxation in the sample is 90 {plus minus} 9 msec K{sup {minus}1}. By observing deviations in the ratio of the intensities of adjacent nuclear spin transitions at the lowest attainable temperatures, the authors were able to make a determination of the sign of the total electric field gradient present in the crystal. Results show that the lowest energy state of the nuclear spin system corresponds to m{sub I} = {plus minus} 7/2. A combination of these deviations and pulse NQR allows this system to be used as an absolute thermometer in the {mu}Kelvin regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.