Abstract

The mean relative DNA content of each human chromosome was calculated from flow karyotypes of ethidium bromide-stained chromosomes obtained from healthy, normal individuals. These values were found to correlate closely with previously published data obtained by photometric scanning of stained, fixed chromosomes. Calculations of the normal variation in DNA content of each human chromosome indicated that chromosomes 1, 9, 16, and Y (chromosomes with large centric heterochromatic regions) were the most variable, followed by the acrocentrics, 13, 14, 15, 21, and 22. Chromosomes 2, 3, 18, and 19 were also found to vary significantly in DNA content. Chromosomes from a number of subjects with extreme heteromorphisms were flow karyotyped to obtain an estimate of the extent of variation in DNA content of each chromosome. The greatest difference between extreme variants was found for chromosome 1 (which differed by 0.82% of the total genomic DNA), followed by 16 and 9. The largest Y-chromosome variant was 85.9% bigger than the smallest. The precise karyotype analysis produced by flow cytometry resolved many differences between chromosome homologs, including some that cannot be readily distinguished cytogenetically. The implications of these findings for detection of chromosome abnormalities by flow karyotype analysis are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call