Abstract
ABSTRACTThe elementary diffusion jump in crystalline solids can be determined by methods derived from nuclear physics. With these methods not only diffusion rate(s) but also diffusion vector(s), i.e. the complete diffusion mechanism can be deduced. We report on a new method for probing the elementary diffusion jumps in crystalline lattices on an atomistic scale and demonstrate its potential by a study of 57Fe diffusion in different intermetallic alloys. Compared to the results of conventional tracer (macroscopic) technique, the new method provides clear and doubtless statements concerning the direction and distance of elementary jumps. One can also determine (though less precisely than with tracer diffusion), iron diffusion coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.