Abstract
In response to a need for the measurement of the deuterium (D) abundance in water and aqueous liquids exceeding those previously recommended when using flowing afterglow mass spectrometry (FA-MS) and selected ion flow tube mass spectrometry (SIFT-MS) (i.e. 1000 parts per million, ppm), we have developed the theory of equilibrium isotopic composition of the product ions on which these analytical methods are based to encompass much higher abundances of D in water up to 10,000 ppm (equivalent to 1%). This has involved an understanding of the number density distributions of the H, D, (16)O, (17)O and (18)O isotopes in the isotopologues of H(3)O(+)(H(2)O)(3) hydrated ions (i.e. H(9)O (4) (+) cluster ions) at mass-to-charge ratios (m/z) of 73, 74 and 75, the relative ion number densities of which represent the basis of FA-MS and SIFT-MS analyses of D abundance. Specifically, an extended theory has been developed that accounts for the inclusion of D atoms in the m/z 75 ions, which increasingly occurs as D abundance in the water is increased, and which is used as a reference signal for the m/z 74 ions in the measurement of D abundance. In order to investigate the efficacy of this theory, experimental measurements of deuterium abundance in standard mixtures were made by the SIFT-MS technique using two similar instruments and the results compared with the theory. It is demonstrated that the parameterization of experimental data can be used to formulate a simple calculation algorithm for real-time SIFT-MS measurements of D abundance to an accuracy of 1% below 1000 ppm and degrades to about 2% at 10,000 ppm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.