Abstract

The location of a series of lipophilic and lipid-attached BODIPY (4,4-difluoro-4-bora-3a,4a-diaza- s-indacene) membrane probes was analyzed by the quenching of BODIPY fluorescence by a series of nitroxide-labeled lipids in which the depth of the nitroxide group is varied. When attached to the polar headgroup of PE the BODIPY remained near the polar headgroup in depth. However, when attached at the end of free or phospholipid-attached fatty acyl chains, or when attached to two hydrocarbon chains, we observed two probe populations. One, usually dominant, population of BODIPY groups ‘looped back’ towards the surface, but a second population remained deeply embedded within the bilayer. When attached to a fatty acid or fatty acyl chain, the deep population appeared to locate at a depth related to its point of attachment to the acyl chain. In BODIPY linked to free fatty acids, the location of the deep population responded to the ionization of the carboxyl group. Because, unlike NBD (7-nitro-2,1,3-benzoxadiazol-4-yl) and most dansyl groups, acyl chain linked BODIPY groups can exist in a deeply buried form we conclude that BODIPY linked acyl chains are superior to NBD or dansyl linked acyl chains as membrane probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.