Abstract
Abstract Structural components of modern aircraft are subjected to elevated temperatures by jet power plants and by skin friction resulting from supersonic speeds. Some of these high-temperature-aircraft structural components are riveted connections. Considerable experimental data are available on the creep of riveted connections used in aircraft [1]. However, a survey of the literature shows a lack of results on the theoretical prediction of creep in riveted connections from the usual creep and creep-rupture data for simple tension. The creep of a riveted joint is dependent on various factors including rivet diameter, rivet lengths, and plate thicknesses. This influence of size means that each particular riveted joint must be tested to obtain the necessary information. A basic approach to the problem is theoretically to predict the creep behavior of riveted joints from creep in simple tension. One of the important parts of the creep deformation of a riveted connection, Fig. 1(a), is the creep of the rivet. This paper deals with an approximate theoretical prediction of the creep deflection in a rivet based upon the creep constants of the material in simple tension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.