Abstract

In this article, we characterize and model two parasitic effects that become apparent in the performance of coplanar waveguide interconnects in CMOS. One is the transverse resistance introduced by a patterned ground shield in coplanar waveguide interconnects, which significantly contributes to the shunt losses. The other one is the parasitic coupling between the input and output ports through the ground shield. The latter effect is particularly accentuated in relatively short lines and complicates the determination of the propagation constant using line–line algorithms at several tens of gigahertz. We demonstrate that using the proposed methodology, excellent model–experiment correlation can be achieved in the modeling of these types of interconnects up to at least 60 GHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.