Abstract

The interproton nuclear Overhauser effect (NOE) and paramagnetic dipolar relaxation rates for hyperfine-shifted resonances in the proton NMR spectra of sperm whale met-cyano sulfmyoglobin have led to the location and assignment of the proton signals of the heme pocket residue isoleucine 99 (FG5) in two sulfmyoglobin isomers. Dipolar relaxation rates of these protein signals indicate a highly conserved geometry of the heme pocket upon sulfmyoglobin formation, while the similar upfield direction of dipolar shifts for this residue to that observed in native sperm whale myoglobin reflects largely retained magnetic properties. Dipolar connectivity of this protein residue to the substituents of the reacted heme pyrrole ring B defines the stereochemistry of the puckered thiolene ring found in one isomer, with the 3-CH3 tilted out of the heme plane proximally. The chirality of the saturated carbons of pyrrole ring B in both the initial sulfmyoglobin product and the terminal alkaline product is consistent with a mechanism of formation in which an atom of sulfur is incorporated distally to form an episulfide across ring B, followed by reaction of the vinyl group to yield the thiolene ring that retains the C3 chirality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call