Abstract

We have previously established a method of detecting intracellular chelatable iron in viable cells based on digital fluorescence microscopy. To quantify cellular chelatable iron, it was crucial to determine the intracellular indicator concentration. In the present study, we therefore adapted the method to confocal laser scanning microscopy, which should allow the determination of the indicator concentration on the single-cell level. The fluorescent heavy-metal indicator phen green SK (PG SK), the fluorescence of which is quenched by iron, was loaded into cultured rat hepatocytes. The hepatocellular fluorescence increased when cellular chelatable iron available to PG SK was removed from the probe by an excess of the membrane-permeable transition metal chelator 2,2′-dipyridyl (2,2′-DPD, 5 mM). We optimized the scanning parameters for quantitatively recording changes in fluorescence and determined individual intracellular PG SK concentrations from the unquenched cellular fluorescence (after 2,2′-DPD) compared with PG SK standards in a “cytosolic” medium. An ex situ calibration method based on laser scanning microscopy was set up to determine the concentration of cellular chelatable iron from the increase of PG SK fluorescence after addition of 2,2′-DPD (5 mM). As the stoichiometry of the PG SK:Fe2+ complex was 3:1 as long as PG SK was not limiting, cellular chelatable iron was calculated directly from absolute changes in cellular fluorescence. Using this method, we found 2.5 ± 2.2 μM chelatable iron in hepatocytes. This method makes it possible to determine the pool of chelatable iron in single vital cells independently of cellular differences (e.g., dye loading, cell volume) in heterogeneous cell populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.