Abstract

The multichannel CH + O2 reaction was studied at room temperature, in a low-pressure fast-flow reactor. CH radical was obtained from the reaction of CHBr3 with potassium atoms. The overall rate constant was determined from the decay of CH with distance, O2 being introduced in excess. The result, after corrections for axial and radial diffusion, is k = (3.6 +/- 0.5) x 10(-11) cm3 molecule-1 s-1. The OH(A2 sigma +) chemiluminescence was observed, confirming the existence of the OH + CO channel. The vibrational population distribution of OH(A2 sigma +) is 32% in the v' = 1 level and 68% in the v' = 0 level (+/- 5%). The relative atomic concentrations were determined by resonance fluorescence in the vacuum ultraviolet. A ratio of 1.4 +/- 0.2 was found between the H atom density (H atoms being produced from the H + CO2 channel and from the HCO dissociation) and the O atom density (O + HCO). Ab initio calculations of the transition structures have been performed, associated with statistical estimations. The estimated branching ratios are: O + HCO, 20%; O + H + CO, 30%; H + CO2, 30%; and CO + OH, 20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call