Abstract

We investigate, both theoretically and experimentally, the drift, diffusion, and recombination of excitons in the strain field of an edge threading dislocation intersecting the GaN{0001} surface. We calculate and measure hyperspectral cathodoluminescence maps around the dislocation outcrop for temperatures between 10 to 200 K. Contrary to common belief, the cathodoluminescence intensity contrast is only weakly affected by exciton diffusion, but is caused primarily by exciton dissociation in the piezoelectric field at the dislocation outcrop. Hence, the extension of the dark spots around dislocations in the luminescence maps cannot be used to determine the exciton diffusion length. However, the cathodoluminescence energy contrast, reflecting the local bandgap variation in the dislocation strain field, does sensitively depend on the exciton diffusion length and hence enables its experimental determination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call