Abstract

The Boltzmann constant k has been determined from a measurement of the speed of sound in helium gas in a quasi-spherical resonator (volume 0.5 l) maintained at a temperature close to the triple point of water (273.16 K). The acoustic velocity c is deduced from measured acoustic resonance frequencies and the dimensions of the quasi-sphere, the latter being obtained via simultaneous microwave resonance. Values of c are extrapolated to the zero pressure limit of ideal gas behaviour. We find J⋅K−1, a result consistent with previous measurements in our group and elsewhere. The value for k, which has a relative standard uncertainty of 1.02 ppm, lies 0.02 ppm below that of the CODATA 2010 adjustment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.