Abstract

Relaxation processes induced by the antisymmetric part of the chemical shift anisotropy tensor (henceforth called anti-CSA) are usually neglected in NMR relaxation studies. It is shown here that anti-CSA components contribute to longitudinal relaxation rates of the indole (15)N nucleus in tryptophan in solution at different magnetic fields and temperatures. To determine the parameters of several models for rotational diffusion and internal dynamics, we measured the longitudinal relaxation rates R(1)=1/T(1) of (15)N, the (15)N-(1)H dipole-dipole (DD) cross-relaxation rates (Overhauser effects), and the cross-correlated CSA/DD relaxation rates involving the second-rank symmetric part of the CSA tensor of (15)N at four magnetic fields B(0)=9.4, 14.1, 18.8, and 22.3 T (400, 600, 800, and 950 MHz for protons) over a temperature range of 270<T<310 K. A good agreement between experimental and theoretical rates can only be obtained if the CSA tensor is assumed to comprise first-rank antisymmetric (anti-CSA) components. The magnitude of the hitherto neglected antisymmetric components is of the order of 10% of the CSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.