Abstract

ABSTRACT X-ray micro-computed tomography (micro-CT) is an advanced technique able to provide a comprehensive examination of the volumetric characteristics of asphalt mixtures. A key step for the air void (AV) quantification using micro-CT images is the segmentation, which is a stage of the digital image processing. The most common segmentation technique, the manual threshold (TH) selection, depends significantly on the operator skills, image homogeneity, and material complexity. These factors that can limit the reproducibility of the TH procedure. Machine learning and deep learning recently appeared as promising alternatives to solve this challenge. In this paper, images of an asphalt concrete (AC) specimen were acquired in a modern high-resolution micro-CT scanner to determine its AV content using four different segmentation tools, i.e. TH, watershed, machine learning, and deep learning. All methods presented similar results for the total AV content. The advantages and limitations of using each technique were discussed in terms of computational effort, user-friendliness, and accuracy of the results. Machine learning and deep learning were identified as powerful tools for AC segmentation, being accurate and easy to adjust, however taking longer data processing times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.