Abstract

A computationally efficient scheme to allow tracking of aerosol species age as a function of space and time within a three‐dimensional chemical transport model (CTM) has been developed. The aerosol age distribution is calculated by utilizing the Particulate Matter Source Apportionment Technology (PSAT) algorithm which allows the calculation of different source contributions to both primary and secondary particulate matter concentrations in the modeling domain. As an example, the aerosol age in the eastern United States, including both primary and secondary species, is examined using the regional CTM PMCAMx. The average calculated ages are on the order of a few days for particulate matter near the ground but are highly variable in space and time. Primary aerosol species had average ages of approximately 24 h over this polluted continental region while the average ages for secondary species were 48–72 h near the surface. As expected, the average age of all aerosol components increases vertically in the atmosphere. Age increases rapidly away from the sources of aerosol and its precursors, and for nonvolatile species it increases with particle size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.