Abstract

The adsorption isotherm of methanol on ice at 200 K has been determined both experimentally and by using the Grand Canonical Monte Carlo computer simulation method. The experimental and simulated isotherms agree well with each other; their deviations can be explained by a small (about 5 K) temperature shift in the simulation data and, possibly, by the non-ideality of the ice surface in the experimental situation. The analysis of the results has revealed that the saturated adsorption layer is monomolecular. At low surface coverage, the adsorption is driven by the methanol-ice interaction; however, at full coverage, methanol-methanol interactions become equally important. Under these conditions, about half of the adsorbed methanol molecules have one hydrogen-bonded water neighbor, and the other half have two hydrogen-bonded water neighbors. The vast majority of the methanols have a hydrogen-bonded methanol neighbor, as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call