Abstract

Mapping the three-dimensional (3-D) electrical conductivity of Earth’s mantle has been identified as one of the primary scientific objectives for the Swarm satellite mission. We present a 3-D frequency domain inversion scheme to recover mantle conductivity from satellite magnetic data. The scheme is based on an inversion of time spectra of internal (induced) spherical harmonic coefficients of the magnetic potential due to magnetospheric sources. Time series of internal and external (inducing) coefficients, whose determination is a prerequisite for this formulation, will be available as a Swarm Level-2 data product. An iterative gradient-type (quasi-Newton) optimization method is chosen to solve our 3-D non-linear inverse problem. In order to make the inversion tractable, we elaborate an adjoint approach for a fast and robust calculation of the data misfit gradient. We verify our approach with synthetic, but realistic time spectra of internal coefficients, obtained by simulating induction due to a realistic magnetospheric source in a 3-D conductivity model of the Earth. In these model studies, both shape and conductivity of a large-scale conductivity anomaly in the mid-mantle are recovered very well. The inversion scheme also shows to be robust with respect to noise and is therefore ready to process Swarm data.

Highlights

  • Mapping the three-dimensional (3-D) electrical conductivity of Earth’s mantle has been identified as one of the primary scientific objectives for the Swarm multi-satellite geomagnetic mission (Friis-Christensen et al, 2006)

  • We describe an alternative approach, based on an inversion of time spectra of internal spherical harmonic expansion (SHE) coefficients of the magnetic potential that describes the signals of magnetospheric origin

  • Numerical Implementation So far, we presented very general derivations, starting from Maxwell’s equations and ending up with the gradient of the penalty function, which is required in gradient-type inversion schemes

Read more

Summary

Christoph Puthe and Alexey Kuvshinov

We present a 3-D frequency domain inversion scheme to recover mantle conductivity from satellite magnetic data. The scheme is based on an inversion of time spectra of internal (induced) spherical harmonic coefficients of the magnetic potential due to magnetospheric sources. We verify our approach with synthetic, but realistic time spectra of internal coefficients, obtained by simulating induction due to a realistic magnetospheric source in a 3-D conductivity model of the Earth. In these model studies, both shape and conductivity of a large-scale conductivity anomaly in the mid-mantle are recovered very well.

Introduction
Eφj dv
Discussion and Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.