Abstract

Mean acoustic bubble temperatures have been measured using a methyl radical recombination (MRR) method, at three ultrasound frequencies (20, 355, and 1056 kHz) in aqueous tert-butyl alcohol solutions (0-0.5 M). The method is based on yield measurements of some of the hydrocarbon products formed from the recombination of methyl radicals that are thermally generated within collapsing bubbles containing tert-butyl alcohol vapor. The mean bubble temperatures were found to decrease substantially with increasing tert-butyl alcohol concentration at 355 and 1056 kHz but only to a small extent at 20 kHz. Extrapolating the mean temperatures measured to zero concentration of tert-butyl alcohol, at a bulk solution temperature of 20 degrees C, gave the order 355 kHz (4300 +/- 200 K) > 1056 kHz (3700 +/- 200 K) > 20 kHz (3400 +/- 200 K). It is also concluded that the temperature derived from the MRR method is a useful diagnostic parameter for sensing the thermal conditions within an active acoustic bubble. However, attention must be given to the fact that the temperature derived from the MRR method is not theoretically well defined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call