Abstract
A method for determination of technical grade isocyanates used in the production of polyurethane (PUR) is presented. The isocyanates in technical grade products were characterised as di-n-butylamine (DBA) derivatives using LC-MS and LC-chemiluminescent nitrogen detection (CLND) and the total isocyanate content was compared to a titration assay. For collection of isocyanates in air, an impinger-filter sampling technique with DBA as derivatisation reagent was used. Characterised DBA and nonadeuterium labelled DBA derivatives of isocyanates in technical products were used as calibration standards and internal standards, respectively, in the analysis of air samples. Three workplaces were studied where PUR products were produced either by spraying or by moulding. In both technical products and in air samples, a number of monomeric, oligomeric and prepolymeric isocyanates of e.g. methylenebisphenyl diisocyanate (MDI) and hexamethylene diisocyanate (HDI) were characterised. Several of these have not previously been described in workplace atmospheres. In the technical isocyanate products, between 69 and 102% of the NCO content determined by titration was accounted for by LC-CLND. Quantifications of a wide range of isocyanates in air samples were performed with correlation coefficients in the range 0.988-0.999 (n= 8) and the instrumental detection limits were 0.7-25 pg. At the two workplaces where MDI- and HDI isocyanurate-based products were sprayed, the isocyanate composition in the air reflected the composition in the technical product. At the workplace where a MDI-based product was used in a moulding process, only the monomeric isocyanates were found in the air. The advantage of using characterised technical grade isocyanates as analytical standards was clearly demonstrated and the possibility of using index compounds when monitoring isocyanate exposure is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.