Abstract

We outline a method by which the surface preference of a species in a multicomponent mixture may be obtained using surface-specific visible-infrared sum frequency generation (SFG) spectroscopy combined with bulk infrared absorption and/or Raman data. In general, the problem is complicated by the fact that the SFG signal is a function of both the surface coverage and the structure of the molecules. Two-dimensional correlation analysis can be used to reveal which spectral features are changing synchronously, that is, in phase with each other, and which ones are evolving in a manner that is phase-shifted by 90° (asynchronous correlation) as a function of the bulk composition. We provide a framework for determining the surface preference from the correlations between the vibrational modes in the SFG spectra and between the modes from SFG and bulk infrared and/or Raman spectra. When compared to the equivalent analysis performed using the SFG spectra alone, this method can be used with the data obtained using a single-beam polarization and in congested spectral regions where fitting to isolate the behavior of individual vibrational modes is not robust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call