Abstract

Sulphiting agents are a class of compounds that are used as preservatives since they release SO2 in food. Regarding meat products, the legislation restricts the use of these food additives, due to some toxic effects that they may have in humans. The most employed analytical procedure for the determination of sulphiting agents in foodstuffs is the Monier-Williams (M-W) method, but the reliability of this method was called into question by several authors. In this work, the M-W method was modified by replacing both the distillation unit to shorten the extraction time (from hours to 5 min) and the final titration with a chromatographic separation followed by conductometric detection of sulphate ion (m-M-W/IC-CD). This method was then validated, and the performance parameters were compared with those of the method based on the direct analysis of sulphite ion by ion chromatography with conductometric detection (DIC-CD). Linearity, accuracy at 40 and 80 mg kg−1 of SO2 and measurement uncertainty resulted comparable. Accuracy at 10 mg kg−1 of SO2 resulted higher for the m-M-W/IC-CD method, but this parameter could be influenced by traces of other sulphur-containing compounds that may be present in meat. The limit of determination of the m-M-W/IC-CD method was slightly higher than that obtained by the DIC-CD method. Finally, through spiking tests, it was proved that sulphide, 2-methyl-3-furanthiol and l-methionine cause “false-positive” responses, by using M-W-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.