Abstract

This work proposes a novel Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method in combination with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of sulfonylurea residues in edible seeds. The chromatographic separation of nine sulfonylureas was accomplished in less than 5.5 min, using a Luna Omega C18 column (50 × 2.1 mm, 1.6 µm). Mobile phase was supplied at 0.55 mL min-1 and consisted of 0.01% (v/v) aqueous acetic acid as eluent A and a mixture methanol/acetonitrile (80/20, v/v) as eluent B. Column temperature was established at 25 °C. A QuEChERS procedure was investigated as sample treatment for sulfonylureas extraction and sample clean-up. Different clean-up agents (i.e. PSA, Z-Sep+, EMR-Lipid and C18) were evaluated, selecting Z-Sep+ (25 mg) as the best option. The proposed method provided an extraction efficiency greater than 86.2%, while absolute matrix effect was lower than 50.1%. Matrix-matched calibration curves were required for analyte quantification. The analytical method was characterized according to SANTE/11813/2017 guideline, and including limits of detection and quantification, precision, and trueness. Linear dynamic ranges were established from 5 to 150 µg kg-1 for all analytes. Linearity (R2 ≥ 0.9974) and precision in terms of repeatability and intermediate precision (relative standard deviation ≤ 14.7%) are reported. The reporting limit was established at 5 µg kg−1, which is above the limits of quantification of the proposed method (≤ 1.64 µg kg−1) and below the maximum residue levels currently established by European legislation. In general, trueness is within the range of 70–120%. Despite greater recoveries were obtained at the reporting limit (i.e. 120–138%), relative standard deviations lower than 20% were obtained at this concentration level, so fulfilling the requirements of SANTE/11813/2017 guideline. This work represents the first analytical method intended for the analysis of sulfonylureas in sunflower, pumpkin and chia seeds, which are complex matrices due to their high content of fat as well as of growing interest due to their current commercialization as nutraceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call