Abstract

This proposed study aims to develop reliable and efficient numerical optimization methods for generating optimal strut-and-tie models (STMs) in structural concrete members under dynamic loads. The numerical models are developed based on the bidirectional evolutionary structural optimization (BESO) method for the stiffness maximization problems. In this method, a controlling index based on the minimum weight and maximum stiffness is defined as the optimization criterion function and the element virtual strain energy is taken as the element removal and addition criterion. By the dynamical analysis, optimal strut-and-tie models are established based on the BESO method. Several examples are presented to show the efficiency of the proposed approach in finding optimal STMs under dynamic loads. It is shown that optimal STMs and reinforcement layouts under dynamic loads generally differ from those obtained under static loads. The developed numerical models based on dynamic responses can be used by practicing design engineers for the analysis and design of STMs in concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.