Abstract

The detection and determination of s-triazines, atrazine-desethyl and aziprotryne by cyclic voltammetry and an amperometric method using a metallic copper electrode and a glassy carbon electrode are described. The concentrations of atrazine-desethyl and aziprotryne in 0.1 M NaOH solutions were determined using the oxidation signal corresponding to the Cu(0)/Cu(I) redox process. The detection level calculated for these s-triazines were 0.3 and 0.5 microg/mL of analyte, respectively. The glassy carbon electrode was shown to give sensitive reduction response to aziprotryne in flow injection mode. No special activation was required for the glassy carbon electrode. A detection limit of 0.2 microg/mL (20 ng aziprotryne) was obtained for a sample loop of 0.1 mL at a fixed potential of -1.0 V (vs. Ag/AgCl) in 0.1 M HCl and a flow rate of 3.5 mL/min. Furthermore, the glassy carbon electrode showed stable response in such a system, and the relative standard deviation was only 2.7% using the same surface, and 6.3% using different surfaces. The method developed was applied to the determination of aziprotryne in environmental and tap water samples; using a prior solid-phase extraction step, aziprotryne concentrations lower than 1.0 ng/mL could be measured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call