Abstract

AbstractA numerical method, with which experimental results were processed, was adopted to measure the total emissivity of mild steel specimens at high temperatures. This method is derived from considering the transient thermal energy equilibrium between a steel specimen and its surrounding heating environment. As a first step to validate this method, the results obtained at a low temperature were compared with those using infrared thermographic techniques, and a good correlation of 87% was achieved. The numerical model was then extended to high temperatures to investigate the variation of emissivity of steel with temperatures. The convective heat transfer coefficient used in the numerical model was examined in great detail using results obtained from transient high temperature tests. The emissivity of steel obtained from this study shows that steel emissivity varies over a range of temperatures and the variation becomes more abrupt between 400 and 500°C. Formulation for the emissivity of steel at rising ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.