Abstract

Solid phase microextraction (SPME) techniques coupled with gas chromatography—isotope ratio mass spectrometry (GCIRMS)were used to determine the stable carbon ( δ 13C) isotopic compositions of aromatic hydrocarbons (BTEX: benzene, toluene, ethylbenzene and xylenes) and phenol in a small suite of co-produced oils and waters from a North Sea oilfield. The δ 13C patterns and the compound profiles observed are consistent with the theory that the concentrations and distributions of BTEX and alkylphenols in oilfield waters can simply be explained by partition equilibrium between oil and water. The large difference in δ 13C signatures for phenol compared with benzene and toluene (7–8 %o vs. PDB) in both the oil and water phases strongly suggests that, at least for BTEX and phenols, reversible chemical reactions controlled by master geochemical variables (such as fO2) do not appear to be important at the temperatures of most oilfields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.