Abstract

With the recent interest in novel control effectors there is a need to determine the stability and control derivatives of new aircraft configurations early in the design process. These derivatives are central to most control law design methods and would allow the determination of closed-loop control performance of the vehicle. Early determination of the static and dynamic behavior of an aircraft may permit significant improvement in configuration weight, cost, stealth, and performance through multidisciplinary design. The classical method of determining static stability and control derivatives - constructing and testing wind tunnel models - is expensive and requires a long lead time for the resultant data. Wind tunnel tests are also limited to the preselected control effectors of the model. To overcome these shortcomings, computational fluid dynamics (CFD) solvers are augmented via automatic differentiation, to directly calculate the stability and control derivatives. The CFD forces and moments are differentiated with respect to angle of attack, angle of sideslip, and aircraft shape parameters to form these derivatives. A subset of static stability and control derivatives of a tailless aircraft concept have been computed by two differentiated inviscid CFD codes and verified for accuracy with central finite-difference approximations and favorable comparisons to a simulation database.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call