Abstract
Spray drift generated in the application of plant protection products in tree crops (3D crops) is a major source of environmental contamination, with repercussions for human health and the environment. Spray drift contamination acquires greater relevance in the EU Southern Zone due to the crops structure and the weather conditions. Hence, there is a need to evaluate spray drift when treating the most representative 3D crops in this area. For this purpose, 4 spray drift tests, measuring airborne and sedimenting spray drift in accordance with ISO 22866:2005, were carried out for 4 different crops (peach, citrus, apple and grape) in orchards of the EU Southern Zone, using an air-blast sprayer equipped with standard (STN) and spray drift reduction (DRN) nozzle types. A further 3 tests were carried out to test a new methodology for the evaluation of spray drift in real field conditions using a LiDAR system, in which the spray drift generated by different sprayer and nozzle types was contrasted. The airborne spray drift potential reduction (DPRV) values, obtained following the ISO 22866:2005, were higher than those for sedimenting spray drift potential reduction (DPRH) (63.82%–94.42% vs. 39.75%–69.28%, respectively). For each crop and nozzle type combination, a sedimenting spray drift model was also developed and used to determine buffer zone width. The highest buffer width reduction (STN vs DRN) was obtained in peach (˃75%), while in grape, citrus and apple only 50% was reached. These results can be used as the starting point to determine buffer zone width in the countries of the EU Southern Zone depending on different environmental threshold values. Tests carried out using LiDAR system demonstrated high capacity and efficiency of this system and this newly defined methodology, allowing sprayer and nozzle types in real field conditions to be differentiated and classified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.