Abstract

Electrogenerated chemiluminescences (ECLs) based on tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy) 3 2+) and lupin alkaloids, for instance, sophoridine (SRI), matrine (MT), sophoranol (SR) and sophocarpine (SC) in an aqueous alkaline buffer solution (pH 9.0) are studied. The light emission is mainly caused by an electro-oxidation reaction between tertiary amino group on the alkaloid compounds and Ru(bpy) 3 2+ in a thin layer flow cell equipped with a glassy carbon disc electrode (22.1 mm 2) at the potential of +1.50 V (versus Ag/AgCl). The luminescence wavelength of 610 nm confirmed that ECL is caused by Ru(bpy) 3 2+∗ to its ground state. ECL intensities of these lupin alkaloids are affected by the substituent character, three-dimensional conformation of hydrogen on β-carbon atom. Ionization potentials taken from calculation data further confirm the experimental results. In addition, the factors affecting the determination and HPLC separation of the four alkaloids are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.