Abstract

This paper presents the application of a frequency-domain reflectometry (FDR) sensor designed for soil salinity assessment of sandy mineral soils in a wide range of soil moisture and bulk electrical conductivity, through the determination of soil complex dielectric permittivity spectra in the frequency range 10–500 MHz. The real part of dielectric permittivity was assessed from the 380–440 MHz, while the bulk electrical conductivity was calculated from the 165–325 MHz range. The FDR technique allows determination of bulk electrical conductivity from the imaginary part of the complex dielectric permittivity, without disregarding the dielectric losses. The soil salinity status was determined using the salinity index, defined as a partial derivative of the soil bulk electrical conductivity with respect to the real part of the soil complex dielectric permittivity. The salinity index method enables determining the soil water electrical conductivity value. For the five sandy mineral soils that have been tested, the relationship between bulk electrical conductivity and the real part of dielectric permittivity is essentially linear. As a result, the salinity index method applied for FDR measurements may be adapted to field use after examination of loam and clayey soils.

Highlights

  • Accurate and reliable estimation of soil salinity, defined as the electrical conductivity of soil water extract or saturated soil water extract, is a very important issue, especially in arid regions, where salinity of the soil may increase significantly and pose a danger to plants [1,2]

  • On the graph one can notice artifacts located near frequencies of 150, 205, 360 and 500 MHz for both parts of. They are related to resonances in the experimental set-up, due mostly to the length of the coax cable connecting the sensor with the vector network analyzer (VNA); the details and discussion are presented in [17]

  • In order to remove the influence of other physical factors and processes on the measured quantities, determination of water content was performed from the real part of dielectric permittivity in the frequency range 380–440 MHz, while the soil salinity was determined from the imaginary part of the dielectric permittivity for lower frequencies

Read more

Summary

Introduction

Accurate and reliable estimation of soil salinity, defined as the electrical conductivity of soil water extract or saturated soil water extract, is a very important issue, especially in arid regions, where salinity of the soil may increase significantly and pose a danger to plants [1,2]. The ideal measurement tool for soil salinity status should read the majority of influencing components at the same time and in the same location as quickly as possible to register the momentary values of interest. This is done by incorporating various sensors in a single unit for insertion into the measured material [3,4] or by selective analysis of sensors’ outputs for discrimination of various quantities like soil water content and electrical conductivity by time domain reflectometry [5]. The salinity index was defined as a partial derivative of the soil with respect to the soil bulk or apparent dielectric permittivity bulk electrical conductivity (Equation (1)), where both variables were determined from the TDR waveform at the same time and on the same soil volume:

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call