Abstract

This research focused on the size and overall porosity (pore volume) of carbonaceous chars, originating from high-heating rates and high-temperature pyrolysis and/or combustion of biomass. Emphasis was given to torrefied biomass chars. First, the porosity of char residues of single biomass particles of known mass was determined, based on an assumed value of skeletal density and by comparing experimentally observed temperature-time histories with numerical predictions of their burnout times. The average char porosities (effective porosities) of several raw and torrefied biomass particles were calculated to be in the range of 92–95%. Thereafter, these deduced porosity values were input again to the model to calculate the size of chars of other biomass particle precursors, whose initial size and mass were not known. Such biomass particles were sieve-classified to different nominal size ranges. This time, besides the porosity, representative time-temperature profiles of biomass particles in the aforementioned size ranges were also input to the model. Biomass particles are highly irregular with large aspect ratios and, in many cases, they melt and spherodize under high heating rates and elevated temperatures. Knowledge of the initial size of the chars, upon extinction of the volatile flames, is needed for modeling their heterogeneous combustion phase. For this purpose, numerical predictions were in general agreement with measurements of char size obtained from both scanning electron microscopy of captured chars and real-time high-speed, high-magnification cinematographic observations of their combustion. Results showed that the generated chars of the examined biomass types were highly porous with large cavities. The average initial dimension of the chars, upon rapid pyrolysis, was in the range of 50–60% the mid-value of the mesh size of the sieves used to size-classify their highly irregular parent biomass particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.