Abstract

The variability of stress resistance and lag time of single cells can have a big impact on their growth and therefore on the probability of their detection in food. In this study, six strains of Cronobacter spp. were subjected to heat, acid and desiccation stress and single cell lag times were determined using optical density measurements. The duration of lag time was highest after acid stress and did not correlate to stress resistance. The effect that the inactivation caused by stress and an extended lag time had on the projected cfu level reached after enrichment was simulated in different scenarios. For most strains, an enrichment time of 18h was sufficient for stressed cells to reach the suggested minimum level of cell inoculum for the Cronobacter screening broth detection. Particular strains may require longer recovery periods. Further, probability calculations showed that the number of samples taken from a batch may have an important effect on detection probability, especially at low contamination rates. Therefore, in addition to increasing the recovery period, increasing the number of samples is a suitable strategy to improve detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call