Abstract

We assessed a new sensing device based on the monitoring of immunobinding reactions using waveguide surface plasmon resonance (WSPR) for the determination of simazine in water samples. Standard solutions between 0.1 and 1.0 μg l −1 analysed in triplicate showed a mean within-day variability of 5%. Calibration curves for the same standards conducted on five consecutive days showed a 14% mean day-to-day variability. The detection limit calculated as three standard deviations below the mean blank value was 0.2 μg l −1. The upper limit of the working range calculated as a 90% decrease in the blank signal was 2.4 μg l −1. The cross-reactivity of atrazine and terbuthylazine was 61 and 63%, respectively. The recovery from spiked natural ground- and surface-water samples ranged from 55 to 153% for spikes ranging from 0.1 to 1.0 μg l −1. For the 11 surface- and 8 ground-water samples tested, the correlation coefficient between WSPR and high pressure liquid chromatography/gas chromatography (HPLC/GC) values was significant ( p<0.05) when the chromatography values were calculated as the weighted sum of simazine and atrazine, taking into account the predetermined cross-reactivity of the latter in the WSPR determination. The present system is therefore better suited for screening groups of pesticides than for the determination of a single molecule. An attempt at analysing a soil water sample proved unsuccessful due to interference probably resulting from strong non-selective polyanion-polycation binding to the transducer surface which includes a basic amino dextran. The total duration of one determination, 22 min, enables almost immediate measurements without any sample pretreatment other than 0.45 μm filtration. No significant alteration of the sensor was observed after 200 determinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call