Abstract

The spatial resolution of laterally segmented electromagnetic calorimeters, built of lead fluoride material, is studied on the basis of Monte-Carlo simulations. Parametrization of the relative resolution on the shower position is proposed and optimized in terms of the energy of incoming particles and the elementary size of the calorimeter blocks. A new fit algorithm method is proposed that improves spatial resolution at high energies (> 5 GeV), and provides guidance for the design optimization of electromagnetic calorimeters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.