Abstract
An amplitude analysis of the B0→K*0μ+μ− decay is presented. The analysis is based on data collected by the LHCb experiment from proton-proton collisions at s=7, 8 and 13 TeV, corresponding to an integrated luminosity of 4.7 fb−1. For the first time, Wilson coefficients and nonlocal hadronic contributions are accessed directly from the unbinned data, where the latter are parametrized as a function of q2 with a polynomial expansion. Wilson coefficients and nonlocal hadronic parameters are determined under two alternative hypotheses: the first relies on experimental information alone, while the second one includes information from theoretical predictions for the nonlocal contributions. Both models obtain similar results for the parameters of interest. The overall level of compatibility with the Standard Model is evaluated to be between 1.8 and 1.9 standard deviations when looking at the C9 Wilson coefficient alone, and between 1.3 and 1.4 standard deviations when considering the full set of C9,C10,C9′ and C10′ Wilson coefficients. The ranges reflect the theoretical assumptions made in the analysis. © 2024 CERN, for the LHCb Collaboration 2024 CERN
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.