Abstract
Microstructure and defect development in the gas tungsten arc weld process is influenced by the solidification and melt-pool dynamics. Melt-pool geometrical parameters which depend mainly on heat input have profound influence on the dendrite growth velocity and growth pattern in the melt pool. Temperature magnitude and history during the process directly determine the molten pool dimensions and surface integrity. However, due to the transient nature and small size of the molten pool, the temperature gradient and the molten pool size are very challenging to measure and control. The proposed research aims to establish a methodology for characterizing direct energy deposited metals by linking processing variables to the resulting microstructure and subsequent material properties. Secondary Dendrite Arm Spacing (SDAS) optical metallographic measurements of equiaxed solidified IN-738LC gas tungsten arc welds were conducted to find a new expression that links the cooling rate that is imposed on the welding during solidification, and the resultant scale of the grain substructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.