Abstract

A 400‐MHz 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis were used in the context of food surveillance to discriminate 46 authentic rice samples according to type. It was found that the optimal sample preparation consists of preparing aqueous rice extracts at pH 1.9. For the first time, the chemometric method independent component analysis (ICA) was applied to differentiate clusters of rice from the same type (Basmati, non‐Basmati long‐grain rice, and round‐grain rice) and, to a certain extent, their geographical origin. ICA was found to be superior to classical principal component analysis (PCA) regarding the verification of rice authenticity. The chemical shifts of the principal saccharides and acetic acid were found to be mostly responsible for the observed clustering. Among classification methods (linear discriminant analysis, factorial discriminant analysis, partial least squares discriminant analysis (PLS‐DA), soft independent modeling of class analogy, and ICA), PLS‐DA and ICA gave the best values of specificity (0.96 for both methods) and sensitivity (0.94 for PLS‐DA and 1.0 for ICA). Hence, NMR spectroscopy combined with chemometrics could be used as a screening method in the official control of rice samples. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call